
Imperfect targeted immunization in scale-free networks

Yubo Wang a, Gaoxi Xiao a,∗, Jie Hu a, Tee Hiang Cheng a,
Limsoon Wang b

aSchool of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
bSchool of Computing and School of Medicine, National University of Singapore, Singapore 117543

Abstract

Scale-free networks are prone to epidemic spreading. To provide cost-effective protection for such
networks, targeted immunization was proposed to selectively immunize the hub nodes. In many
real-life applications, however, the targeted immunization may not be perfect, either because
some hub nodes are hidden and consequently not immunized, or because the vaccination simply
cannot provide perfect protection. We investigate the effects of imperfect targeted immunization
in scale-free networks. Analysis and simulation results show that there exists a linear relationship
between the inverse of the epidemic threshold and the effectiveness of targeted immunization.
Therefore a weak protection does not significantly increase the epidemic threshold of the network.
On the other hand, even a relatively weak protection over the hub nodes significantly decreases
the number of network nodes ever getting infected and therefore enhances network robustness
against virus.
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1. Introduction

Many real-life complex systems can be described as networks [1,2]. The well-known
examples include the Internet [3], World-Wide Web (WWW) [4], food web [5], and the
human society [6]. Studies on these systems as networks have spawned a new research
area called complex networks [2,7]. Statistical studies on real-life complex networks show
that many of them share some nontrivial features. One of the most noticeable features is
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that they are usually scale-free networks of which the nodal degrees follow a power-law
distribution. Specifically, the probability that a node is connected to k other nodes is

P (k) ∼ k−r, (1)

where the exponent r usually ranges between 2 and 3 [2]. In a scale-free network, a large
number of nodes have low degrees while a small number of nodes have very high degrees.
It is known that scale-free networks enable efficient communications but they are prone
to disease/virus spreading [8,9].

Studies on epidemic spreading are strongly motivated by the threats we are facing, e.g.,
virus spreading in the Internet [9] and infectious diseases such as HIV in human society
[6]. Within networks, virus lives and proliferates in network nodes and propagates via
links. Recent research shows that epidemic spreading in an infinitely large scale-free
network with an exponent r ≤ 3 does not possess any epidemic threshold below which
the infection cannot produce a major epidemic outbreak or an endemic state [9–12]. In
other words, statistically speaking, a virus can easily survive and cause an outbreak in an
infinitely large scale-free network no matter how weak its spreading capability is. Further
studies on the finite-size scale-free networks show that the epidemic threshold remains
to be low and decreases with an increasing network size [13]. Such analytical results help
to explain our real-life experiences, e.g., persistent virus spreading in the Internet.

Due to the peculiar connection pattern in scale-free networks, a small number of nodes
have very high degrees. The random immunization strategy is not effective in prevent-
ing an epidemic outbreak or reducing the number of infections in a scale-free network
though such a strategy works very well in homogeneous random networks [14,15]. New
immunization strategies have to be developed to recover the epidemic threshold. One
of the most efficient approaches is to immunize those nodes with the highest degrees,
or, more specifically, to immunize those nodes (hereafter termed as hubs or hub nodes)
with degrees higher than a preset cut-off value kc. Such a strategy is known as targeted
immunization [14].

In existing studies on targeted immunization, it is generally assumed that all hub nodes
are immunized; and once a hub is immunized, it will never be infected. We realize that in
many real-life systems, this may not always be the case, either because the immunizations
have missed some hubs or because the vaccination is not 100% effective [16–19]. In this
paper, we consider three different cases as follows:

(i) Some hub nodes may be hidden and hence not immunized. This is more likely
to happen in large-scale systems. We term this case Partial Node Immunization
(PNI);

(ii) The vaccination cannot provide 100% protection over the immunized nodes but
can lower their chance of getting infected. We call this case Partial Effective Im-
munization (PEI);

(iii) The vaccination cannot stop disease propagation through some network links. In
other words, an immunized hub may still be infected by some, though not all, of
its adjacent nodes. This may happen between family members or trusted partners,
etc. We call it Partial Link Immunization (PLI).

For all the three different cases, we introduce the immunization rate a. Specifically,
in PNI, it denotes the percentage of the hubs that are (perfectly) immunized; in PEI,
it denotes the effectiveness of vaccination. In other words, each immunized hub has a
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probability of 1 − a to act as a susceptible node; and in PLI, it denotes the percentage
of protected links connected to the hub nodes.

Based on the Susceptible-Infected-Removed (SIR) model [20,21], we analyze the epi-
demic threshold and the portion of network nodes ever got infected until the disease dies
out (hereafter termed as Average Outbreak Size (AOS)) for these three different cases
in scale-free networks. We find that there is a linear relationship between the inverse of
the epidemic threshold and the immunization rate; therefore, only a high immunization
rate can significantly increase the epidemic threshold. However, even a relative low im-
munization rate can still greatly reduce AOS; the network robustness against epidemic
spreading is therefore enhanced.

2. Models

2.1. Susceptible-Infected-Removed (SIR) model

In this paper, we adopt the SIR model. Study results based on susceptible-infected-
susceptible (SIS) model [20] will be presented in a separate report. The original SIR model
was proposed (though never published) by Reed and Frost in 1920s. In SIR, network
nodes are divided into three groups: Susceptible (S), Infected (I), and Removed (R).
Susceptible nodes are free of disease but can be infected via direct contacts with infected
nodes. Infected nodes carry the disease and can pass it to susceptible nodes. Removed
nodes have either recovered from the disease or died; in either case, they cannot pass the
disease to other nodes or be infected again. In the SIR model, time is slotted. In each time
slot, a susceptible node becomes infected at a rate of λ (λ ≤ 1) if it is directly connected
to at least one infected node [8,11]. The parameter λ is the microscopic spreading rate
(also known as the infection rate). Meanwhile, an infected node becomes a removed node
at the rate of δ (δ ≤ 1). Without loss of generality, throughout this paper we set δ = 1
[8,11].

As mentioned earlier, two metrics will be adopted for evaluating imperfect targeted
immunization: (i) epidemic threshold λc, which is a critical spreading rate below which
infections die out exponentially and above which an epidemic outbreak will happen; and
(ii) AOS.

2.2. Imperfect Targeted Immunization

In the classic targeted immunization, vaccinations are deployed to all hub nodes with
degrees greater than kc while non-hub nodes are not immunized. In PNI with an immu-
nization rate of a, a fraction a of the hub nodes are randomly selected to be perfectly
immunized while the others are not immunized. In PEI, a hub node is infected at a rate
of (1 − a)λ if it is directly connected to at least one infected node. In PLI, immunized
hub nodes can be infected at a rate of λ by a fraction (1 − a) of its randomly selected
adjacent nodes but never by the rest of the adjacent nodes.

In all the three different cases, a non-hub node can be infected at a rate of λ if it is
directly connected to at least one infected node; and the infected nodes are removed at
a unity rate. Apparently a = 1 corresponds to the case of the classic perfect targeted
immunization and a = 0 corresponds to the case of no immunization.
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2.3. Network models

The simulation results presented in this paper are based on two different network mod-
els: Barabási-Albert (BA) model [2,22,23] and Autonomous-System (AS) level Internet
model [24].

The BA model incorporates two important general concepts: growth and preferential
attachment. It is an uncorrelated network for which the probability that any two nodes
are directly connected is proportional to the product of their nodal degrees.

The AS-level Internet model comes from the real-life data collected in the National
Laboratory for Applied Network Research (NLANR) project on January 2, 2000, which
contains 6474 nodes connected by 12,572 links. It has been verified that this model closely
resembles a scale-free network. It is a disassortative network [25] in which high-degree
nodes tend to connect to low-degree nodes.

3. Theoretical analysis

We perform theoretical analysis on the uncorrelated scale-free network model (e.g.,
the BA model). Analysis on correlated network models is notoriously complicated [10–
14] and thus has to be left out for a separate report. We argue that the analysis on
the uncorrelated network model, simple as it is, can nevertheless reveal some properties
that are valid in many other networks, as has been observed in a few existing studies
[8,11,13,14,26,27]. In this paper, our theoretical analyses focus on studying the epidemic
threshold and AOS.

3.1. Partial Node Immunization (PNI)

Denote the densities of infected, susceptible, removed and immunized nodes with degree
k at time t as Sk(t), ρk(t), Rk(t) and Ik(t), respectively. We have

Sk(t) + ρk(t) + Rk(t) + Ik(t) = 1. (2)

Following Moreno, Pastor-Satorras and Vespignani et al. [11,14], by applying the dy-
namical mean-field (MF) theory [28], PNI can be described by the following differential
equations:

dρk(t)
dt

= −ρk(t) + λkSk(t)θ(t); (3)

dSk(t)
dt

= −λkSk(t)θ(t); (4)

dRk(t)
dt

= ρk(t), (5)

where θ(t) denotes the probability that a randomly selected link is connected to an
infected node at time t. The term λkSk(t)θ(t) in Eqs. (3) and (4) indicates the percentages
of k-degree nodes which are newly infected. It is a reasonable approximation to the general
expression λSk(t){1− [1−θ(t)]k} at a low spreading rate: where a small number of nodes
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are infected at a close-to-threshold spreading rate, the density of the infected nodes ρk(t)
approaches zero; hence θ(t) � 1.

For any uncorrelated network, the probability that a randomly selected link points to
a k-degree node is proportional to kP (k) [8,25]. Therefore, in PNI,

θ(t) =
∑

k kP (k)ρk(t)∑
s sP (s)

=
∑

k kP (k)ρk(t)
< k >

, (6)

where < k > denotes the average nodal degree. Assume that at the beginning of epidemic
spreading only a very small fraction of nodes are infected and randomly distributed within
the network; or in other words, ρk(0) .= 0. Since in PNI the density of the immunized
nodes is Ik(t) = a for k > kc and Ik(t) = 0 otherwise, the initial conditions can be stated
as: ⎧⎨

⎩ ρk(0) = 0, Rk(0) = 0, Sk(0) = 1 − a, Ik(t) = a if k > kc,

ρk(0) = 0, Rk(0) = 0, Sk(0) = 1, Ik(t) = 0 if k ≤ kc.
(7)

Considering Eq. (4) with the initial conditions as in Eq. (7), we derive the density of
the susceptible nodes as

Sk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

−λk

t∫
0

θ(t
′
)dt

′
+ ln(1 − a)

if k > kc,

e

−λk

t∫
0

θ(t
′
)dt

′

if k ≤ kc.

(8)

Defining an auxiliary function φ(t) as representing the value of the integration in the
exponent in Eq. (8) and replacing θ(t) by Eq. (6), we have

φ(t) =

t∫
0

θ(t
′
)dt

′
=

t∫
0

∑
k kP (k)ρk(t

′
)

< k >
dtt =

∑
k kP (k)

∫ t

0 ρk(t
′
)dt

′

< k >

=
1

< k >

∑
k

kP (k)Rk(t). (9)

From Eq. (9), we see that φ(t) actually represents the probability that a randomly
selected link points to a removed node at time t. Take differentiation of φ(t), we have a
self-consistent equation of φ(t) that

dφ(t)
dt

=
1

< k >

∑
k

kP (k)ρk(t) =
1

< k >

∑
k

kP (k)[1 − Rk(t) − Sk(t) − Ik(t)]

= 1 − 1
< k >

ku∑
kc+1

kP (k)Ik(t) − φ(t) − 1
< k >

∑
k

kP (k)Sk(t). (10)

5



Here kt and ku denote the minimum and maximum nodal degrees of the network respec-
tively, and kc+1 = kc + 1. At the steady state of epidemic spreading where t → ∞ and
lim

t→∞
dφ(t)

dt = 0, we can derive from Eq. (10) that

φ(∞) = 1 − 1
< k >

ku∑
kc+1

kP (k)Ik(∞) − 1
< k >

∑
k

kP (k)Sk(∞)

= 1 − 1
< k >

ku∑
kc+1

kP (k)Ik(∞) − 1
< k >

[ kc∑
kt

k

×P (k)e−λkφ(∞) +
ku∑

kc+1

kP (k)e−λkφ(∞)+b

]

= F (φ(∞)). (11)

Obviously φ(∞) = 0 is a solution of Eq. (11), corresponding to the case where there is
no epidemic outbreak. To have an epidemic outbreak, there must be a non-zero solution
of φ(∞) in the interval (0,1 − 1

<k>

∑ku

kc+1
kP (k)Ik(t)) satisfying

dF (φ(∞))
dφ(∞)

∣∣∣φ(∞)=0 > 1 , (12)

which defines the epidemics threshold λc for PNI as [11,14]

λ−1
c =

1
< k >

⎡
⎣ ku∑

kt

k2P (k) − a

ku∑
kc+1

k2p(k)

⎤
⎦ . (13)

Eq. (13) applies to any un-correlated network with degree distribution P (k). For a N -
node BA model where P (k) = 2m2/k3, < k >= 2m and ku

.= mN1/2 [22,29], applying
the continuum theory to Eq. (13), we have the expression of epidemic threshold that

λ−1
c =

1
2
m ln N − am ln

mN1/2

kc+1
. (14)

Eqs. (13) and (14) show that there is a linear relationship between the inverse epidemic
threshold λ−1

c and the immunization rate a. Hence the epidemic threshold can only be
significantly increased by a high immunization rate. Fig. 1 shows the dependence of
epidemic threshold on the immunization rate and the cut-off. It is also clear that in
infinitely large scale-free networks, the epidemic threshold would remain close to zero
even when only a small portion of hub nodes are not very well protected.

Note that for the special cases where a = 0 and 1, Eqs. (13) and (14) correspond to
the well-known cases with no immunization [11] and perfect targeted immunization [14]
respectively. By setting kc = kt, Eqs. (13) and (14) describe the case with global random
immunization [14,15].

Denote R∞ as the network AOS. By adopting the continuum theory, we have

R∞ = 1 −
∑

k

P (k)Ik(∞) −
∑

k

P (k)Sk(∞)
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Fig. 1. Dependence of epidemic threshold on immunization rate and immunization cut-off in the BA
model.

= 1 − am2

k2
c+1

−
[ kc+1∑

kt

2m2

k3
e−λkφ(∞) + (1 − a)

ku∑
kc+1

2m2

k3
e−λkφ(∞)

]

.= 1 − am2

k2
c+1

− ( ∞∫
kt

2m2

k3
e−λkφ(∞)dk − a

∞∫
kc+1

2m2

k3
e−λkφ(∞)dk

)
. (15)

In the above equation, we assume that ku is of a very large or infinite value, which is a
reasonable approximation in ultra-large scale-free networks [23,24]. Denote z1 = λktφ(∞)
and z2 = λkc+1φ(∞). For a spreading rate close to the epidemic threshold, we have z1 →
0, and z2 → 0. Therefore, Eq. (15) can be re-written as

R∞ = 1 − am2

k2
c+1

− 2m2
( z2

1

k2
t

∞∫
z1

x−3e−xdx − a
z2
2

k2
c+1

∞∫
z2

x−3e−xdx
)
. (16)

The integrations in Eq. (16) are in the form of incomplete gamma function Γ(a, z) =∫ ∞
z ta−1e−tdt with the property that for z → 0,

Γ(a + 1, z) = aΓ(a, z) + zae−z, (17)

Γ(0, z) .= −rE − ln(z) + z + o(z2), (18)

where rE is the Euler constant [30]. By neglecting the higher-order terms in Eqs. (17) and
(18), Eq. (16) can be expressed as

R∞ = 1 − am2

k2
c+1

− 2m2

[
1
k2

t

(
1
2
− z1) − a

1
k2

c+1

(
1
2
− z2)

]

= mλφ(∞)(2 − am

kc+1
). (19)

The only unknown term in Eq. (19) is φ(∞). From the self-consistent Eq. (11), we
have
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φ(∞) = 1 − 1
< k >

ku∑
kc+1

kP (k)Ik(t) − 1
< k >

∑
k

kP (k)Sk(∞)

= 1 − ma

kc+1
− m

( ku∫
kt

k−2e−λkφ(∞)dk − a

ku∫
kc+1

k−2e−λkφ(∞)dk
)
.

(20)

The integrations are again in the form of incomplete gamma function. Let z1 = λktφ(∞)
and z2 = λkc+1φ(∞). Eq. (20) can be re-written as:

φ(∞) = 1 − m
(z1

kt

∞∫
z1

x−2e−xdx − a
z2

kc+1

∞∫
z2

x−2e−xdx
)
. (21)

Applying the properties of the incomplete gamma function and its expansion as shown
in Eqs. (17) and (18), we have

φ(∞) = z1 − rEz1 − z1 ln z1 − ma

kc+1
z2 +

ma

kc+1
rEz2 +

ma

kc+1
z2 ln z2. (22)

Replacing z1 and z2 by their respective expressions, we have

Aφ(∞) + Bφ(∞) ln φ(∞) = 0, (23)

where A = [1−(1−a)λm+(1−a)rEλm+λm ln(λm)−aλm ln(λkc+1)] and B = (1−a)λm.
Hence φ(∞)can be calculated as

φ(∞) = exp(−A

B
). (24)

Combining Eqs. (19) and (24), we can predict the network AOS as a function of
immunization rate, spreading rate and immunization cut-off for an infinite-size scale-free
network. For finite-size networks, the analysis result reflects the trend of AOS changes
in PNI as long as the network is large enough.

3.2. Partially Effective Immunization (PEI)

The same set of symbols has been adopted in the analysis of PEI. Still by applying the
dynamical mean-field theory, we describe PEI by the following set of coupled differential
equations:

dρk(t)
dt

=

⎧⎨
⎩−ρk(t) + (1 − a)λkSk(t)θ(t) if k > kc,

−ρk(t) + λkSk(t)θ(t) if k ≤ kc;
(25)

dSk(t)
dt

=

⎧⎨
⎩−(1 − a)λkSk(t)θ(t) if k > kc,

−λkSk(t)θ(t) if k ≤ kc;
(26)

dRk(t)
dt

= ρk(t). (27)

8



Eqs. (25) - (27) are valid in evaluating the onset of infections close to the epidemic
threshold where ρk(t) � 1 and θ(t) � 1. Similarly to that in Eqs. (3) and (4), (1 −
a)λSk(t){1−[1−θ(t)]k} is replaced by (1−a)λkSk(t)θ(t). The probability that a randomly
selected link is connected to an infected node can still be expressed as

θ(t) =
∑

k kP (k)ρk(t)
< k >

. (28)

Still assume the initial condition as Rk(0) = 0, ρk(t) .= 0, and Sk(0) = 1 − ρk(0) .= 1.
We have

Sk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

−(1 − a)λk

t∫
0

θ(u)du

if k > kc ,

e

−λk

t∫
0

θ(u)du

if k ≤ kc.

(29)

Define an auxiliary function φ(t) =
∫ t

0
θ(u)du,

φ(t) =
1

< k >

t∫
0

∑
k

kP (k)ρk(u)du =
1

< k >

∑
k

kP (k)

t∫
0

ρk(u)du

=
1

< k >

∑
k

kP (k)Rk(t).

(30)

Taking differentiation of φ(t), we have the self-consistent equation of φ(t) where

dφ(t)
dt

=
1

< k >

∑
k

kP (k)ρk(t) =
1

< k >

∑
k

kP (k)[1 − Rk(t) − Sk(t)]

= 1 − φ(t) − 1
< k >

∑
k

kP (k)Sk(t).
(31)

At the steady state where t → ∞, all the infected nodes are removed. Therefore we
have ρk(∞) = 0 and lim

t→∞
dφ(t)

dt = 0. From Eq. (31), we obtain φ(t) as

φ(∞) = 1 − 1
< k >

∑
k

kP (k)Sk(∞). (32)

From Eqs. (28) and (32), we have

φ(∞) = 1 − 1
< k >

[
ku∑

kc+1

kP (k)e−(1−a)λkφ(∞) +
kc∑
kt

kP (k)e−λkφ(∞)

]
. (33)

Similarly to the case of PNI, we define an auxiliary function

F (φ(∞)) = 1 − 1
< k >

[
ku∑

kc+1

kP (k)e−(1−a)λkφ(∞) +
kc∑
kt

kP (k)e−λkφ(∞)

]
. (34)
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To ensure that φ(∞) = F (φ(∞)) has a nonzero root between 0 and 1, subject to the
constraint that φ(∞) = 0 is a solution of this equation, the following condition has to be
satisfied [11,14]:

dF (φ(∞))
dφ(∞)

∣∣∣∣
φ(∞)=0

> 1. (35)

Therefore,

1
< k >

[
ku∑

kc+1

kP (k)(1 − a)λk +
kc∑
kt

kP (k)λk

]
> 1. (36)

Similar to Eq. (10), Eq. (34) defines the epidemic threshold, which can be calculated
as

λ−1
c =

1
< k >

[
ku∑
kt

k2P (k) − a

ku∑
kc+1

k2P (k)

]
. (37)

Considering the particular case of an N -node BA model, P (k) = 2m2/k−3, kt = m
and ku

.= mN1/2, we have from Eq. (37) that

λ−1
c = m ln

k1−a
u

mk−a
c+1

=
1
2
m ln N − am ln

mN1/2

kc+1
. (38)

Finally, to calculate the AOS in an infinitely large scale-free network, we have

R∞ = 1 −
∑

k

P (k)Sk(∞)

= 1 −
( kc∑

kt

2m2

k3
e−λkφ(∞) +

ku∑
kc+1

2m2

k3
e−(1−a)λkφ(∞)

)

= 1 − ( ∞∫
kt

2m2

k3
e−λkφ(∞)dk −

∞∫
kc+1

2m2

k3
e−λkφ(∞)dk

+

∞∫
kc+1

2m2

k3
e−(1−a)λkφ(∞)dk

)
.

(39)

Since the integrations in Eqs. (39) are in the form of incomplete gamma-function,
applying Eqs. (17) and (18), we have

R∞ = 2m2λφ(∞)(
1
m

− a

kc+1
). (40)

Also we can derive the expression of φ(∞) from Eq. (32) that
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φ(∞) = 1 − 1
< k >

∑
k

kP (k)Sk(∞) = 1 − m
( ∞∫

kt

k−2e−λkφ(∞)dk

−
∞∫

kc+1

k−2e−λkφ(∞)dk +

∞∫
kc+1

k−2e−(1−a)λkφ(∞)dk
)
.

(41)

Again, the integrations in Eq. (41) can be considered as incomplete gamma functions.
Therefore we have the simplified equation of φ(∞) that

ln(φ(∞)) =
1

(1 − a)λm
( − 1 + λm{(1 − a)(1 − rE) − ln m

−(1 − a) ln[(1 − a)λ] − a ln kc+1}),
(42)

and consequently,

φ(∞) = exp
[ 1
(1 − a)λm

(− 1 + λm{(1 − a)(1 − rE) − ln m

−(1 − a) ln[(1 − a)λ] − a ln kc+1})
]
.

(43)

Together with Eq. (39), the network AOS can be calculated. Since a simple closed-form
solution of φ(∞) is difficult to achieve, we plot figures in Section IV to demonstrate the
respective effects of immunization rate and spreading rate on AOS.

3.3. Partial Link Immunization (PLI)

The mean-field level differential equations for PLI can be presented as:

dρk(t)
dt

=

⎧⎨
⎩−ρk(t) + (1 − a)λkSk(t)θ(t) if k > kc ,

−ρk(t) + λkSk(t)θ(t) if k ≤ kc ;
(44)

dSk(t)
dt

=

⎧⎨
⎩−(1 − a)λkSk(t)θ(t) if k > kc,

−λkSk(t)θ(t) if k ≤ kc;
(45)

dRk(t)
dt

= ρk(t). (46)

Again, the term (1− a)λkSk(t)θ(t) in Eqs. (44) and (45) denotes the percentage of k-
degree hub nodes that are newly infected at a close-to-threshold spreading rate. Similar to
Eqs. (6) and (28) for PNI and PEI respectively, the probability that a randomly selected
link is connected to an infected node can be expressed as

θ(t) =
∑

k kP (k)ρk(t)
< k >

. (47)

We see that Eqs. (44) - (47) are exactly the same as Eqs. (25) - (27). Therefore, the
epidemic threshold and AOS at a spreading rate close to epidemic threshold are the
same for PEI and PLI. The AOS of PLI under high spreading rates will be studied by
numerical simulations.
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Fig. 2. Dependence of the epidemic threshold on the immunization rate in imperfect targeted immuniza-
tions in the BA model. The embedded figure shows the inverse epidemic thresholds. The solid lines in
the major and embedded figures show the analytical results.

4. Simulation results and discussions

Numerical simulations have been implemented on a 10, 000-node BA model and the
AS-level Internet model. For each simulation, a single infected node is randomly selected
at the starting point. Following the SIR scheme, the system finally reaches the steady
state when all the infected nodes are removed. All the results displayed are averaged
from at least 10, 000 realizations, each of which with a randomly selected infected node
at the starting point. Different realizations may still have the same starting infected node;
however, the random process of disease propagation, even under such cases, will not be
exactly repeated.

4.1. Epidemic threshold

Simulation results for the BA model are presented in Fig. 2, where we set kc = 4. As we
can see, the epidemic threshold increases with the immunization rate a. At the beginning,
the increasing speed is slow, and then becomes much faster. With the three different types
of imperfect targeted immunizations, the captured epidemic thresholds almost equal to
each other. The inverse of the captured epidemic thresholds (i.e., the simulated λ−1

c )
versus the corresponding value of a are plotted in the embedded figure. We see that the
relationship closely resembles a linear function, which verifies the analytical results.

Simulation results for the AS-level Internet model are presented in Fig. 3. We see that
in this correlated network, there is still a roughly linear relationship between the inverse
epidemic threshold and the immunization rate. The results suggest that in correlated
and uncorrelated large-size scale-free networks, to significantly increase the epidemic
threshold, the immunization rate has to be rather high.
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Fig. 3. Dependence of the epidemic threshold on the immunization rate in imperfect targeted immuniza-
tions in the AS-level Internet model. The solid line in the embedded figure comes from the least-square
linear regression calculations of the captured inverse epidemic thresholds.

4.2. Average Outbreak Size (AOS)

Eqs. (24), (24) and (43) show the relationship between AOS and immunization rate.
As in almost all the existing studies, the equations are derived for the case with an
infinitely large network size and a close-to-threshold low spreading rate. The analytical
results for the case are plotted in Fig. 4(a) where we set λ = 0.04 and cut-off kc = 4
for the BA model. Note that the PEI and PLI have the same results. It is clearly shown
that even a low immunization rate significantly decreases AOS, although an epidemic
outbreak may still happen. Moreover, under a low spreading rate, the AOSs for the three
different immunization schemes are almost the same. Under a higher spreading rate,
however, different immunization schemes have different impacts on AOS, as illustrated
in Fig. 4(b).

To address the changes of AOS in finite-size networks (with or without correlations),
numerical simulations have been conducted for 10,000-node BA and AS-level Internet
models. The results are presented in Fig. 5, where we set the spreading rate and im-
munization cut-off as 0.25 and 4, respectively. Apparently, a low immunization rate still
helps to significantly lower AOS even when the spreading rate is relatively high. Further-
more, we notice that the three imperfect targeted immunizations have different impacts
on AOS: PNI and PLI can be viewed as epidemic spreading in scale-free networks with
some of their hub nodes and/or links connected to them being removed [31–34]. Com-
pared to PLI, PNI leads to a removal of more hub nodes (a.k.a super-spreader [11,35])
and their links, and consequently a smaller AOS. In PEI, similarly to PNI, some of the
hub nodes are protected in each time slot. However, such protection is not permanent:
a node being protected in this time slot can still be affected later on. As a result, PEI
leads to a larger AOS than PNI.
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(a) (b)

Fig. 4. Analytical results on the dependence of AOS on immunization rate in the infinitely-large BA
model. The spreading rates are set to be 0.04 and 0.08 for Fig. 4(a) and 4(b), respectively. Cut-off is set
to be 4 for both of them.

(a) BA model (b) AS-level Internet model

Fig. 5. Dependence of AOS on different immunization rates in finite-size networks.

5. Conclusion

In this paper, we evaluated the effectiveness of imperfect targeted immunization in
scale-free networks. Three different cases have been proposed and analyzed. We found
that under the same immunization rate, the three different cases result in the same
epidemic threshold but different AOSs. A linear relationship between the inverse epidemic
threshold and the immunization rate has been identified, which shows that the possibility
of having an epidemic outbreak cannot be significantly lowered unless the protection is
reasonably strong. On the other hand, even a low immunization rate lowers network AOS
significantly.
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Figure captions

Fig. 1 Dependence of epidemic threshold on immunization rate and immunization cut-
off in the BA model.

Fig. 2 Dependence of the epidemic threshold on the immunization rate in imperfect
targeted immunizations in the BA model. The embedded figure shows the inverse epi-
demic thresholds. The solid lines in the major and embedded figures show the analytical
results.

Fig. 3 Dependence of the epidemic threshold on the immunization rate in imperfect
targeted immunizations in the AS-level Internet model. The solid line in the embedded
figure comes from the least-square linear regression calculations of the captured inverse
epidemic thresholds.

Fig. 4 Analytical results on the dependence of AOS on immunization rate in the
infinitely-large BA model. The spreading rates are set to be 0.04 and 0.08 for (a) and
(b), respectively. Cut-off is set to be 4 for both of them.

Fig. 5 Dependence of AOS on different immunization rates in finite-size networks.
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